
Magnitude Simba SDK

Build a C++ ODBC Driver in 5 Days (MAC OS X)
Version 10.2.2
October 2022

Copyright

This document was released in October 2022.

Copyright ©2014–2022 Magnitude Software, Inc., an insightsoftware company. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission from Magnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in
your Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only and
may be trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged
with the software.

Contact Us

Magnitude Software, Inc.

www.magnitude.com

www.magnitude.com 2

Build a C++ ODBC Driver in 5 Days (MAC OS X)

http://www.simba.com/

Table of Contents

Table of Contents

About this Guide 5

Simba SDK Overview 8
ODBC Standards 8

The Simba SDK Solution 8

About the QuickStart Sample Connector 9

Day One 13
Install the Simba SDK 13

Build the Sample ODBC Connector 15

Configure the Connector and Data Source 17

Connect to the Data Source 18

Set up a Custom ODBC Connector Project 20

Configure Your Custom Connector and Data Source 21

Debug Your Custom Connector 23

Enable Logging 25

Day Two 27
Set the Configuration Branding 27

Set Connector Properties 27

Set Logging Details 28

Check Connection Settings 29

Establish a Connection 31

Day Three 32
Create and Return Metadata Sources 32

Day Four 38
Enable Data Retrieval 38

Day Five 41
Rebrand Error Messages 41

Rebrand the Custom ODBC Connector 42

Reference 43
Driver Managers 43

Locating the Configuration Files 44

www.magnitude.com 3

Build a C++ ODBC Driver in 5 Days (MAC OS X)

Data Retrieval 46

Server Configuration 48

How to Add Schema Support 48

Install the Evaluation License 49

Troubleshooting 49

Contact Us 51

Third-Party Trademarks 52

www.magnitude.com 4

Build a C++ ODBC Driver in 5 Days (MAC OS X)

About this Guide

Purpose

This guide explains how to use the Magnitude Simba SDK to create a custom ODBC
connector for a data store that is not SQL-capable. It explains how to customize the
QuickStart sample connector, which is included with the Simba SDK.

Using this sample connector is the quickest and easiest way to create a custom ODBC
connector. At the end of five days, you will have a read-only connector that connects to
your data store. This custom ODBC connector can be used as the foundation for a
commercial DSI implementation.

Note:

An online version of this guide is located at
http://www.simba.com/resources/sdk/documentation.

Advantages of Using the Simba SDK

The ODBC specification defines a rich interface that allows any ODBC-enabled
application to connect to a data store. In order to implement a connector that supports
this specification, developers have to understand all the complexities of error
checking, session management, and data conversion, then design their code in a
robust and efficient manner. Developers must also understand how to optimize data
retrieval in order to get maximum performance when connecting to large and complex
data stores.

For data stores that do not support SQL, the Simba SDK provides an SQL parser and
an execution engine. Developers can use these features to translate SQL queries to a
custom API that the data store understands.

The Simba SDK, developed by experts in the field, is a complete implementation of the
ODBC specification. It exposes an easy-to-use SDK that allows you to create a robust
and efficient connector for your data store.

Build a Custom ODBC Connector in Five Days

Over the course of five days, this guide explains how to accomplish the following
tasks:

1. Set up the development environment and build the sample connector.
2. Use the sample connector as a template to create a custom ODBC connector.

www.magnitude.com 5

Build a C++ ODBC Driver in 5 Days (MAC OS X) About this Guide

http://www.simba.com/resources/sdk/documentation

3. Make a connection to the data store.
4. Retrieve metadata.
5. Work with columns.
6. Retrieve data.
7. Rename and rebrand the custom ODBC connector.

In the QuickStart connector, the areas of code that require modification are marked
with “TODO” messages and a short explanation. Some of these changes customize
the connector for your specific data store, while other changes rename the connector
for your company or product.

Audience

The guide is intended for developers who want to use the Simba SDK to build a
connector for a data store that is not SQL-capable.

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and
text that a user types.

Monospace font indicates commands, source code or contents of text files.

NOTE:

Indicates a short note appended to a paragraph.

IMPORTANT:

Indicates an important comment related to the preceding paragraph.

Knowledge Prerequisites

To use the Simba SDK to build a custom ODBC connector, the following knowledge is
helpful:

l Familiarity with the C++ programming language.
l Ability to use the data store to which the connector you are developing will
connect.

l An understanding of the role of ODBC technologies and driver managers in

www.magnitude.com 6

Build a C++ ODBC Driver in 5 Days (MAC OS X) About this Guide

connecting to a data store.
l Exposure to SQL.

Variables Used in this Document

The following variables are used in this document:

Variable Description

[INSTALL_DIR]

Installation directory for the SimbaEngine X SDK.

Default value on Windows platforms: C:\Simba
Technologies\SimbaEngineSDK\10.2

Default value on Linux, Unix, and macOS platforms: [UNTAR_
DIR]/SimbaEngineSDK/10.2

[UNTAR_DIR]
Directory where the SimbaEngine X SDK distributable was
untarred.

[JDBC_VERSION]

The version of JDBC that your driver supports.

You can use the SimbaEngine X SDK to build a driver for
version 4.2 and 4.3, or a hybrid version.

Possible values of [JDBC_VERSION] are 42 and 43, and
Hybrid.

www.magnitude.com 7

Build a C++ ODBC Driver in 5 Days (MAC OS X) About this Guide

Simba SDK Overview

Applications, such as Crystal Reports and Tableau, use connectors to connect to data
stores from which they read and write data. Applications support the ODBC protocol to
enable connection with any connector that also supports ODBC. A connector exposes
the ODBC protocol to the application and another API, such as SQL or a custom API,
to the data store.

Note:

This guide explains how to create an ODBC connector for a data store that is
not SQL-capable. To create an ODBC connector for a data store that is SQL-
capable, see Build an ODBC Connector for SQL-Capable Data Sources in 5
Days.

ODBC Standards

ODBC is one of the most established and widely-supported APIs for connecting to and
working with databases. A main component of this technology is the ODBC connector,
which connects an application to the database.

For a brief description of the ODBC standard, see
http://www.simba.com/resources/data-access-standards-library#!odbc.

For complete information on the ODBC 3.80 specification, see the ODBC
Programmer's Reference at http://msdn.microsoft.com/en-us/library/ms714177
(v=vs.85).aspx.

The Simba SDK Solution

Connectors based on the Magnitude Simba SDK leverage its error checking, session
management, data conversion, optimization, and other low-level implementation
details. The Simba SDK uses ODBC to communicate with the driver manager and a
simple API (called the Data Store Interface API or DSI API) to communicate with the
data store. The DSI API defines the primitive operations needed to access a data
store.

The figure below shows a typical ODBC stack:

www.magnitude.com 8

Build a C++ ODBC Driver in 5 Days (MAC OS X) Simba SDK Overview

http://odbc_driver_sql-aware_data_sources/
http://odbc_driver_sql-aware_data_sources/
http://www.simba.com/resources/data-access-standards-library#!odbc
http://msdn.microsoft.com/en-us/library/ms714177(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms714177(v=vs.85).aspx

SDK developers create an implementation of a DSI (also known as a DSI
Implementation or DSII) that applications use to access the particular data store in the
process of executing an SQL statement. In the final executable, the components from
Simba SDK take responsibility for meeting the data access standards while the
custom DSI implementation takes responsibility for accessing the data store and
translating it to the DSI API.

ODBC applications, such as Tableau or Microsoft Excel, use this executable when
connecting to the data store in the process of executing an SQL statement.

About the QuickStart Sample Connector

The Simba SDK includes a sample connector that you can use as a template to create
a custom ODBC connector for data stores that are not SQL-capable. The QuickStart
connector is a sample DSI implementation of an ODBC connector, written in C++, that
reads files in tabbed Unicode text format. The Simba SQLEngine is used to perform
SQL processing, allowing the QuickStart connector to retrieve data from the sample
text files, which are not a SQL-capable data source.

www.magnitude.com 9

Build a C++ ODBC Driver in 5 Days (MAC OS X) Simba SDK Overview

Using the QuickStart sample connector to prototype a DSI implementation for a
custom data store helps developers understand how the Simba SDK works. By
removing the shortcuts and simplifications implemented in the QuickStart connector,
you can use it as the foundation for a commercial DSI implementation and create a
custom ODBC connector for a data store that is not SQL-capable.

The UML diagram below shows a typical design pattern for a DSI implementation:

www.magnitude.com 10

Build a C++ ODBC Driver in 5 Days (MAC OS X) Simba SDK Overview

www.magnitude.com 11

Build a C++ ODBC Driver in 5 Days (MAC OS X) Simba SDK Overview

Notice the circular pattern of class relationships, headed by iResult and anchored
by QSUtilities.

The iResult class is responsible for retrieving column data and maintaining a cursor
across result rows. The QSUtilities class contains platform-specific utility
functions.

To implement data retrieval, your Reader class interacts directly with your data store
to retrieve data, and then deliver the data to the QSTable class on demand. The
Reader class should manage caching, buffering, paging and all the other techniques
to speed data access.

As a starting point, to make your connector work properly with Microsoft Excel you can
add metadata access by implementing the QSTypeInfoMetadataSource class and
using the DSIExtMetadataHelper class. The DSIExtMetadataHelper class is
responsible for iterating through tables and stored procedures so the engine can
generate catalog function metadata.

www.magnitude.com 12

Build a C++ ODBC Driver in 5 Days (MAC OS X) Simba SDK Overview

Day One

The Day One instructions explain how to install the Simba SDK, compile the sample
ODBC connector, and review the configuration information created at compile time.

After the sample ODBC connector is successfully compiled, it is used to retrieve data
from the data source that is included with the Simba SDK. The sample ODBC
connector is then used to create the framework for a custom ODBC connector, which
is renamed and used to retrieve sample data.

At the end of the day, you will have compiled, built and tested your custom ODBC
connector.

Install the Simba SDK

The Simba SDK for macOS platforms includes an installer to help you install and
configure the product correctly. This installer removes any previous installations,
installs the product, and configures the DSN and other configuration files for the
sample connectors.

Important:

If a previous installation of the Simba SDK with the same product and compiler
version exists on your machine, the installer removes it. We recommend that
you back up any previous work before reinstalling the product.

Note:

If the ODBC configuration files odbc.ini and odbcinst.ini exist on your
machine, the installer modifies them to add information for the sample
connectors. Both the system-wide configuration files under /Library/ODBC
and the user-specific files under ~/Library/ODBC are modified. ODBC
configuration files in other locations are not modified.

If these files do not exist on your machine, the installer creates them.

To install the Simba SDK:

The Simba SDK is distributed as a .dmg file inside a .tar.gz file.

1. Ensure you have global administrator privileges on your machine.
2. Uninstall any previous versions of the Simba SDK.

www.magnitude.com 13

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

3. Ensure the evaluation license is installed. See Install the Evaluation License.
4. Copy the SimbaEngineSDK[BUILD].tar.gz file to the Simba SDK

installation directory, where [BUILD] is the build number and platform.

Ensure you copy the correct version of the Simba SDK for your platform. To
determine your machine version, type uname -m at the command prompt.

5. Uncompress the file by typing the following:

gunzip SimbaEngineSDK[BUILD].tar.gz

6. Extract the .tar file by typing the following:

tar -xvf SimbaEngineSDK[BUILD].tar

7. Double-click the .dmg file, then double-click the .pkg file.

The installer launches.
8. In the Introduction window, select Continue.
9. In the Read Me window, read the release notes then select Continue.
10. In the License window, read the license agreement then select Continue.
11. In the resulting window, if you agree with the license conditions, select Agree.
12. In the Installation Type window, if you agree with the install location, select

Install. Otherwise, select Change Install Location and select a different disk.

Note:
l The installer always installs the Simba SDK to /Library/Simba_
XCode[XCode_VERSION]/SimbaEngineSDK, but you can
choose which disk.

l On macOS platforms, Microsoft Excel 2016 only load connectors
from /Library and /Applications.

13. Enter the username and password to complete the installation. The user must
have global administrator privileges.

14. In the final installation window, select Close.

The Simba SDK is installed to the location /Library/Simba_XCode[XCode_
VERSION]/SimbaEngineSDK.

The following system-wide environment variables are set using the plist file
/Library/LaunchAgents/setenv.SIMBAENGINESDK.plist:

l SIMBAENGINE_DIR=/Library/Simba_XCode[XCode_
VERSION]/SimbaEngineSDK/10.2/DataAccessComponents

www.magnitude.com 14

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

l SIMBAENGINE_THIRDPARTY_DIR=/Library/Simba_XCode[XCode_
VERSION]/SimbaEngineSDK/
10.2/DataAccessComponents/ThirdParty

Install the Evaluation License

Driver Managers

Build the Sample ODBC Connector

You can use the sample makefile to build the QuickStart connector. The sample
makefile automatically detects the required settings based on your operating system,
machine bitness, and compiler. For more information about different makefile options,
see Compiling Your Connector in the guide Developing Connectors for Data Stores
Without SQL.

To build the Simba SDK QuickStart sample connector:

The sample connectors included with the Simba SDK are installed in the folder
/Library/Simba_XCode[XCode_
VERSION]/SimbaEngineSDK/10.2/Examples.The sample connectors include
sample makefiles.

In the following instructions, replace [INSTALL_DIR] with the Simba SDK installation
directory, for example /Library/Simba_XCode7.

1. Change to the following directory:
[INSTALL_
DIR]/SimbaEngineSDK/10.2/Examples/Source/Quickstart/Source

2. Type ./mk.sh MODE=debug to run the makefile for the debug target.

Important:

Do not use the makefile directly. Use the mk.sh script instead.

3. By default, the makefile detects the latest version of XCode on your machine.
Optionally, you can specify a different version of XCode using the environment
variable DEVELOPER_DIR. For an example, see Compiling your Connector at
Developing Connectors for Data Stores Without SQL.

The resulting library, libQuickStart<BITNESS>.dylib, is put in the following
directory:

www.magnitude.com 15

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

[INSTALL_
DIR]/SimbaEngineSDK/
10.2
/Examples/Source/
QuickStart/Bin/<BUILD>/<RELEASE|DEBUG><BITNESS>.

Where <BUILD> is a combination of your operating system, machine bitness, and
compiler, <RELEASE|DEBUG> is either release or debug, and <BITNESS> is 32,
64, or 3264.

Example Build Location Using XCode 7
/Library/Simba_
XCode7/SimbaEngineSDK/
10.2/Examples/Source/QuickStart/Bin/Darwin_x86_
Xcode7/debug64/libQuickStart64.dylib

Extracting 32- or 64-bit libraries from a universal library

You can use the lipo command to extract 32- or 64-bit libraries from a universal
library.

To extract i386 or x86_64 libraries from the universal library:

1. Navigate to the following directory:
[INSTALL_
DIR]/SimbaEngineSDK/
10.2/Examples/Source/QuickStart/Bin/Darwin_x86_xcode
[XCode_VERSION]/<RELEASE|DEBUG><BITNESS>

2. To display a list of the architectures found in the QuickStart sample connector
universal library created in the previous step, type the following:
lipo -info libQuickStart3264.dylib

The following information appears:
Architectures in the fat file: libQuickStart3264.dylib
are: i386 x86_64

3. To extract i386 libraries from the universal library, type:
lipo libQuickStart3264.dylib -extract i386 -output
libQuickStart32.dylib

4. To extract x86_64 libraries, type:
lipo libQuickStart3264.dylib -extract x86_64 -output
libQuickStart64.dylib

The library is extracted.

www.magnitude.com 16

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

Compiling Your Connector in the guide Developing Connectors for Data Stores
Without SQL

Configure the Connector and Data Source

On macOS platforms, the Simba SDK supports the iODBC driver manager. The driver
manager uses configuration files to locate and load ODBC connectors. The odbc.ini
file defines ODBC data sources, or DSNs, and the odbcinst.ini file defines ODBC
connectors.

If the ODBC configuration files odbc.ini and odbcinst.ini exist on your machine,
the installer modifies them to add information for the sample connectors. Both the
system-wide configuration files under /Library/ODBC and the user-specific files
under ~/Library/ODBC are modified. ODBC configuration files in other locations are
not modified. If these files do not exist on your machine, the installer creates them.

To configure the QuickStart connector and data source:

1. In the /Library/ODBC directory, open the odbc.ini configuration file in a text
editor.

2. Make sure there is an entry in the [ODBC Data Sources] section that defines
the data source name (DSN) of the QuickStart sample connector.

Example:
[ODBC Data Sources]
QuickstartDSII=QuickstartDSIIDriver

3. Make sure there is a section with a name that matches the data source name
(DSN).

Example:Using XCode 7
[QuickStartDSII]
Description=64-bit QuickStart DSII
DBF=/Library/Simba_
XCode7/SimbaEngineSDK/10.2/Examples/Databases/QuickStart
Driver=/Library/Simba_
XCode7/SimbaEngineSDK/
10.2/Examples/Source/QuickStart/Bin/Darwin_x86_
Xcode7/debug64/libQuickStart64.dylib

4. Save and close the file.
5. Open the odbcinst.ini configuration file in a text editor.
6. Add a new entry to the [ODBC Drivers] section.

www.magnitude.com 17

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

Example:
[ODBC Drivers]
QuickStartDSIIDriver=Installed

7. Add a new section with a name that matches the new connector name.

Example: Using XCode 7
[QuickStartDSIIDriver]
Driver=/Library/Simba_
XCode7/SimbaEngineSDK/
10.2/Examples/Source/QuickStart/Bin/Darwin_x86_
Xcode7/debug64/libQuickStart64.dylib

8. Save and close the file

Your custom ODBC connector and data source are configured.

Locating the Configuration Files

Connect to the Data Source

In order for the QuickStart sample connector to connect to the sample database
successfully, the DYLD_LIBRARY_PATH environment variable must include
references to the OpenSSL and ICU libraries.

Note:

l You must have a driver manager installed. See Driver Managers.
l You must use a 64-bit driver manager with a 64-bit connector, or a 32-bit
driver manager with a 32-bit connector.

To add the OpenSSL library and the ICU library to the library path:

1. Locate the path to the correct version of the OpenSSL library for your platform,
compiler, and machine bitness. For example:
/Library/Simba_
XCode6/SimbaEngineSDK/
10.2/DataAccessComponents/ThirdParty/openssl/1.0.1/Darwin_
x86_Xcode6/release3264/lib

2. Add the OpenSSL path to the DYLD_LIBRARY_PATH environment variable. For
example:
export DYLD_LIBRARY_PATH=DYLD_LIBRARY_PATH:[Path to
OpenSSL]

www.magnitude.com 18

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

3. Locate the path to the correct version of the ICU library for your platform,
compiler, and machine bitness. For example:
/Library/Simba_
XCode6/SimbaEngineSDK/
10.2/DataAccessComponents/ThirdParty/icu/53.1.x/Darwin_
x86_Xcode6/release3264/lib

4. Add the ICU path to the DYLD_LIBRARY_PATH environment variable. For
example:
export DYLD_LIBRARY_PATH=DYLD_LIBRARY_PATH:[Path to ICU]

OpenSSL is used by SimbaClient for ODBC. Your custom ODBC connector may not
require this library.

To test connecting the QuickStart sample connector to the sample data source:

This procedure uses the iodbctest utility that is included with the iODBC driver
manager. For help, see Troubleshooting.

1. At the command prompt, type iodbctest.
2. At the prompt that says “Enter ODBC connect string”, type ? to show the list of

DSNs and Drivers.

The list contains QuickStartDSII DSN.
3. To connect to your data source, type: DSN=QuickStartDSII

The prompt SQL> appears.
4. Type a SQL command to query the database. For example:

SELECT * FROM PRODUCT

The SQL results are returned.
5. To quit iodbctest, type quit at the prompt.

Note:

You can use other ODBC-enabled applications to test the sample connector.
Note that Microsoft Excel 2016 will only load connectors from /Library and
/Applications.

Once the QuickStart sample connector project is built, it can be used to create a
custom connector project.

Troubleshooting

www.magnitude.com 19

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

Set up a Custom ODBC Connector Project

Once the QuickStart project has been built and tested, you can create a custom
project for your ODBC connector.

Important:

It is very important that you create your own project directory. You might be
tempted to simply modify the sample project files, but we strongly recommend
that you create your own project directory. If you simply modify the sample
project files:

l All your changes will be lost when you install a new version of the SDK.
l You will lose your frame of reference for debugging.
There may be times, for debugging purposes, that you will need to see if
the same error occurs using the sample connectors. If you have modified
the sample connectors, this won’t be possible.

To create a custom ODBC connector project based on the QuickStart sample
connector:

1. Ensure you are working in a window or shell where the SIMBAENGINE_DIR
and SIMBAENGINE_THIRDPARTY_DIR environment variables are set, as
explained in Build the Sample ODBC Connector.

2. Copy the Quickstart directory to create a new top-level directory for your
custom ODBC connector project. Be sure to copy hidden files and symlinks too,
for example:
mkdir [INSTALL_
DIR]/SimbaEngineSDK/10.2/Examples/Source/MyQuickstart
cp -a [INSTALL_
DIR]/SimbaEngineSDK/10.2/Examples/Source/Quickstart/.
[INSTALL_
DIR]/SimbaEngineSDK/10.2/Examples/Source/MyQuickstart

where [INSTALL_DIR] is the Simba SDK installation directory, for example
/Library/Simba_XCode7.

This new directory is referred to as the [Project] directory in the following steps.
3. In the [Project]/Source directory, open the GNUmakefile in a text editor.
4. Replace the target.driver target name with the name of your custom

connector.

Example:

www.magnitude.com 20

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

Replace this line: target.driver = libQuickstart${BITS}.${SO}

With this line: target.driver = libMyQuickstart${BITS}.${SO}

5. Save and close the file.
6. In the [Project]/Source directory, run the following command to build your

custom ODBC connector:

./mk.sh MODE=debug

Your custom ODBC connector project is built.

Compiling Your Connector in the guide Developing Connectors for Data Stores
Without SQL

Troubleshooting

Configure Your Custom Connector and Data Source

On macOS platforms, the Simba SDK supports the iODBC driver manager . This
driver manager uses configuration files to define and configure ODBC data sources
and connectors. The odbc.ini file is used to define ODBC data sources and the
odbcinst.ini file is used to define ODBC connectors. Connector-specific
information , such as log file location, is configured in the .simba.QuickStart.ini
file.

To configure the odbc.ini file:

1. Open the /Library/ODBC/odbc.ini configuration file in a text editor.
2. Make sure there is an entry in the [ODBC Data Sources] section that defines

the data source name (DSN).

Example:
[ODBC Data Sources]
MyQuickStartDSII=MyQuickStartDSIIDriver

3. Make sure there is a section with a name that matches the data source name
(DSN).

Example:

[MyQuickStartDSII]
Description=Sample SimbaEngine QuickStart DSII

www.magnitude.com 21

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

DBF=
[INSTALLDIR]/SimbaEngineSDK/
10.2/Examples/Databases/QuickStart/
Driver=/Library/Simba_
XCode7/SimbaEngineSDK/
10.2/Examples/Source/MyQuickStart/Bin/Darwin_x86_
Xcode7/debug64/libMyQuickStart64.dylib
Locale=en-US

4. Save and close the file.

To configure the odbcinst.ini file:

1. Open the /Library/ODBC/odbcinst.ini configuration file in a text editor.
2. Add a new entry to the [ODBC Drivers] section. For example:

[ODBC Drivers]
MyQuickStartDSIIDriver=Installed

3. Add a new section with a name that matches the new connector name.

Example:

[MyQuickStartDSIIDriver]
Driver=/Library/Simba_
XCode7/SimbaEngineSDK/
10.2/Examples/Source/MyQuickStart/Bin/Darwin_x86_
Xcode7/debug64/libMyQuickStart64.dylib

4. Save and close the file.

To configure the .simba.QuickStart.ini file:

1. Copy the sample .simba.QuickStart.ini file to the user's home directory.
Note that the sample .simba.QuickStart.ini file is hidden.

2. Open the ~/.simba.QuickStart.ini configuration file in a text editor.

3. Replace every instance of [INSTALLDIR] with the installation location of the
Simba SDK.

4. Set the DriverManagerEncoding setting to UTF-32.

www.magnitude.com 22

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

Note:
l This step is optional, because the Simba SDK automatically detects
the type and version of the driver manager. Set the
DriverManagerEncoding only if you want to override the value
that is automatically detected.

l If you are unsure where the driver manager is installed, contact
your system administrator or see Driver Managers for more
information.

5. Edit the ErrorMessagesPath setting to replace [INSTALLDIR] with your
install directory.

6. Set the ODBCInstLib to the absolute path of the ODBCInst library for the Driver
Manager that you are using.

Note:

This step is optional, because the Simba SDK automatically detects the
type and version of the ODBCInst library. Set this value only if you want
to override the value that is automatically detected.

The ODBCInst library is a part of the driver manager but is used by the
connector to read values from the odbc.ini file. The value of this key is
the absolute path of the ODBCInst library. For the iODBC Driver Manager
this would be <driver manager dir>/lib/libiodbcinst.dylib
(notice the ‘i’ after the lib).

7. Save the file.

The custom connector and data source are configured.

Configure the Connector and Data Source

Locating the Configuration Files

Debug Your Custom Connector

You can use a debugger to step through the custom connector code and gain a better
understanding of the connector's functionality. This section explains how to use the
iodbctest application to connect to the custom connector, then use the LLDB deugger
to step through the connector code.

www.magnitude.com 23

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

To debug the custom connector code:

1. Follow the instructions in Connect to the Data Source to use iodbctest to connect
to the custom connector. Use the name of your custom ODBC connector instead
of the QuickStart Connector.

2. To quit iodbctest, type quit at the command prompt.
3. To start the debugger, type lldb iodbctest.
4. Type the following:

b Simba::DSI::DSIDriverFactory

This sets a breakpoint at the DSIDriverFactory() function in the Main_
Unix.cpp file. This is a good breakpoint to start with, because this function runs
as soon as the driver manager loads the ODBC connector.

Note:

LLDB may display a message that the breakpoint cannot be resolved to a
location because the connector is not loaded yet. This will be resolved in
a following step when you run the connector.

5. To set a different breakpoint, view the source code the following directory:
[INSTALL_DIR]/SimbaEngineSDK/10.2/Examples/Source/Simba
SDK/Source/

6. To load and run the connector until the breakpoint is encountered, type:
run
DSN=MyQuickstartDSII;UID=<YourUserName>;PWD=<YourPassword>

The program runs until the breakpoint is encountered.

Note:

When using the lldb debugger with an application, the ODBC connector is not
loaded until the application is running and a connection is made. This means
that breakpoints can be set either before or after the connector is loaded,
depending on which breakpoint you want to hit.

This step verifies that the custom connector, based on the QuickStart project, is
correctly installed and configured, and that the development system is properly set up.

ODBC Troubleshooting: How to Enable Driver-manager Tracing

www.magnitude.com 24

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://www.simba.com/blog/odbc-troubleshooting-tracing/

Enable Logging

You can turn on logging for your custom ODBC connector. By setting the log level to
Trace, you can gain a better understanding of how your custom ODBC connector
works.

To enable logging in your custom ODBC connector:

1. Open the .simba.quickstart.ini file in the user's home directory.

Note:

Your custom ODBC connector is not yet completely rebranded, so
configuration information is read from the .simba.quickstart.ini
file. The name of this file is set using #define DRIVER_LINUX_
BRANDING in the Main_Unix.cpp file.

2. Set the LogLevel to 6 for trace level, or another level if you prefer.
3. Set the LogPath to the directory to use for log files.

Example:
LogLevel=6
LogPath=/usr/tmp/myquickstart/logs

The log files are created the next time the connector is used.

Log File Format

The log files have the following format, where [Message] is optional:
[Date] [Log Level] [Thread ID] [Class] [Message]

Example:
Jun 15 14:05:12.017 INFO 9864
ConnectionSettings::LoadSettings: ConnString setting: "DSN" =
"MyQuickstartDSII"

Summary of Day One

You have successfully completed the following tasks:

l Built and tested the QuickStart sample connector.
This verifies that your installation and development environment are properly
configured.

l Created, built, and tested a custom connector project by copying the QuickStart
connector.
You can use this project as a framework to create your custom ODBC connector.

www.magnitude.com 25

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/

http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/

www.magnitude.com 26

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day One

http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/
http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/

Day Two

Day Two instructions explain how to customize your ODBC connector, enable logging,
and establish a connection to your data store.

Set the Configuration Branding

The DSIDriverFactory() implementation in Main_Unix.cpp is the main entry
point that is called from Simba’s ODBC layer to create an instance of the DSI
implementation. This method is called as soon as the Driver Manager calls
LoadLibrary() on the ODBC connector shared object.

To construct the connector singleton:

1. In your custom ODBC connector project, open the file Main_Unix.cpp.
2. Navigate to the line TODO #1: Construct connector singleton.
3. Look at the DSIDriverFactory() implementation, and locate the following

line of code:
SimbaSettingReader::SetConfigurationBranding(DRIVER_LINUX_
BRANDING);

4. In the default implementation, DRIVER_LINUX_BRANDING defines the string
"simba.QuickStart.ini". This is the name of the .ini file that specifies
the connector settings.

5. Change this string to the name of a configuration file reflecting the name of your
connector or company.

6. Save the Main_Unix.cpp file.
7. Update the name of the "simba.QuickStart.ini" file to match DRIVER_

LINUX_BRANDING.

Set Connector Properties

To set connector properties:

1. Open the file QSDriver.cpp file and navigate to the line TODO #2 Set the
connector properties.

2. Go to the method SetDriverPropertyValues(), where the general
properties for the connector are set. Change the properties described below:

www.magnitude.com 27

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Two

Property Description

DSI_DRIVER_DRIVER_NAME

Set this property to the
name of the connector (the
same name used to replace
QuickStartDSII in Day One).
This is the connector name
that is shown to the
application.

DSI_DRIVER_STRING_
DATA_ENCODING

Optional. The encoding of
char data from the
perspective of the data
store. Depending on the
character sets, this property
may need to be changed.

DSI_DRIVER_WIDE_STRING_
DATA_ENCODING

Optional. The encoding of
wide character data from the
perspective of the data
store. Depending on the
character sets, this property
may need to be changed.

Set Logging Details

This section explains how to set the connector-wide and connection-wide logging.

To set logging details:

1. Open the file QSDriver.cpp and navigate to the line TODO #3 Set the
connector-wide logging details.

2. Change the connector log’s file name.
3. Open the file QSConnection.cpp and navigate to the line TODO #4 Set the

connection-wide logging details.
4. Change the connection log’s file name. Under default behavior this is routed to

the connector logs. If you want to log connections differently you need to
override the QSConnection::GetLog() function.

5. Click Save All.

www.magnitude.com 28

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Two

Note:

By default, the QuickStart connector maintains two kinds of log files: one for all
connector-based calls and one for each connection created. Update these
sections if you do not require such fine granularity in logging.

For more information about how to enable logging, see Developing Connectors for
Data Stores Without SQL.

Check Connection Settings

When the Simba ODBC layer is given a connection string from an ODBC-enabled
application, the Simba ODBC layer parses the connection string into key-value pairs.
The entries in the connection string and the DSN are then sent to the
QSConnection::UpdateConnectionSettings() function for validation.

If entries of the connection string overlap entries from the DSN, then the connection
string will override parameters from the DSN.To pass additional parameters to your
DSII, simply add new parameters to the connection string, or add new entries to the
DSN entry. These values will automatically be picked up by the SDK and passed
through for use by your DSII.

UpdateConnectionSettings() receives all the incoming connection settings that
are specified in the DSN that was used to establish the connection. The role of this
function is to ensure that all of the required, and any optional, settings are present.
Note that actual data validation of the settings should be done in the Connect()
function.
Example:

The connection string “DSN=QuickStart;UID=user;” will be broken down into key value
pairs and passed in via the DSIConnSettingRequestMap parameter. In this case
that map would contain two entries: {DSN, QuickStart} and {UID, user}. If a DSN was
specified, then the DSN value is removed from the map and any entries that are stored
in the preconfigured DSN are inserted into the map. Once the map has been created
with all the key-value pairs from the connection string and DSN, this map is passed
down to the DSII.

To check the connection settings for the custom connector:

1. Open the file QSConnection.cpp and navigate to the line TODO #5 Check
Connection Settings.

2. Modify the UpdateConnectionSettings() function to validate that the
settings (key-value pairs) in the DSIConnSettingRequestMap are sufficient

www.magnitude.com 29

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Two

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

to create a connection. Any settings that are not present should be added to the
DSIConnSettingResponseMap parameter.

We recommend using the VerifyRequiredSetting() or
VerifyOptionalSetting() functions to perform this verification. These
functions also add missing settings to DSIConnSettingResponseMap.

Note:

The connection settings listed in UpdateConnectionSettings() are
specific to the QuickStart connector. A custom connector will require
different settings.

Example - QuickStart connector:

The QuickStart connector verifies that the settings contained in in_
connectionSettings are sufficient to create a connection by using the
following code:
VerifyRequiredSetting(QS_DBF_KEY, in_connectionSettings,
out_connectionSettings);
VerifyOptionalSetting(QS_DEFAULT_MAX_COLUMN_SIZE_KEY, in_
connectionSettings, out_connectionSettings);
VerifyOptionalSetting(QS_USE_CUSTOM_STATES_KEY, in_
connectionSettings, out_connectionSettings);
VerifyOptionalSetting(QS_USE_CACHING_KEY, in_
connectionSettings, out_connectionSettings);
VerifyOptionalSetting(QS_LOCALE, in_connectionSettings,
out_connectionSettings);

The QuickStart connector requires a single key in the DSN, DBF. The other keys
are optional.

3. If any required values are missing, the connector will either fail to connect, or will
call PromptDialog(), depending on the connection settings. If all required
values exist, then Connect() will be called.

4. If any of the values received are invalid, then the code should throw an
ErrorException seeded with DIAG_INVALID_AUTH_SPEC.

Manually verifying the connection settings

Settings can also be verified manually. If the entries within in_
connectionSettings are not sufficient to create a connection, then the connector
can ask for additional information from the ODBC-enabled application by manually
specifying the additional, required settings in out_connectionSettings. If there
are no further entries required, simply leave out_connectionSettings empty.

www.magnitude.com 30

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Two

For more information on ODBC connections, see the Knowledge Base article DSII
Connection Process for ODBC at http://www.simba.com/resources/sdk/knowledge-
base/dsii-connection-process-for-odbc.

Establish a Connection

The Simba SDK calls UpdateConnectionSettings() before calling
QSConnection::Connect(). Once
QSConnection::UpdateConnectionSettings() returns out_
connectionSettings without any required settings—if there are only optional
settings, a connection can still occur—then the Simba ODBC layer calls
QSConnection::Connect(), passing in all the connection settings received from
the application.

During Connect(), the connector should have all the settings necessary to make a
connection as verified by UpdateConnectionSettings(). You can use the utility
functions GetRequiredSetting() and GetOptionalSetting() to request the
required and optional settings for your connection, and attempt to make an actual
connection.

To establish a connection:

1. Open the file QSConnection.cpp and navigate to the line TODO #6 Establish
A Connection.

2. Look at the code that authenticates the user against your data store using the
information provided within the in_connectionSettings parameter. Use
GetRequiredSetting() and GetOptionalSetting() to access the
settings in the map.

3. Add validation to your custom ODBC connector. If authentication fails, throw an
error. Note that the sample ODBC connector does not perform validation.

The user is now authenticated against your data store.

Summary of Day Two

You have successfully authenticated the user against your data store and established
a connection.

www.magnitude.com 31

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Two

http://www.simba.com/resources/sdk/knowledge-base/dsii-connection-process-for-odbc
http://www.simba.com/resources/sdk/knowledge-base/dsii-connection-process-for-odbc

Day Three

The Day Three instructions explain how to return the data used to pass catalog
information back to the ODBC-enabled application.

Create and Return Metadata Sources

Your custom ODBC connector uses metadata sources, provided by the Simba SDK, to
handle SQL catalog functions.

Overview of SQL Catalog Functions

ODBC applications need to understand the structure of a data store in order to execute
SQL queries against it. This information is provided using catalog functions. For
example, an application might request a result set containing information about all the
tables in the data store, or all the columns in a particular table. Each catalog function
returns data as a result set.

Most ODBC-enabled applications require a connector to implement the following
catalog functions.You may wish to implement additional catalog functions in your
custom connector.

Catalog Function Description

SQLGetTypeInfo Returns information about data types supported by the
data source.

SQLTables (CATALOG_
ONLY)

If CatalogName is SQL_ALL_CATALOGS and
SchemaName and TableName are empty strings, the
result set contains a list of valid catalogs for the data
source. (All columns except the TABLE_CAT column
contain NULLs.)

SQLTables (SCHEMA_
ONLY)

If SchemaName is SQL_ALL_SCHEMAS and
CatalogName and TableName are empty strings, the
result set contains a list of valid schemas for the data
source. (All columns except the TABLE_SCHEM
column contain NULLs.)

www.magnitude.com 32

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

Catalog Function Description

SQLTables (TABLE_
TYPE_ONLY)

If TableType is SQL_ALL_TABLE_TYPES and
CatalogName, SchemaName, and TableName are
empty strings, the result set contains a list of valid
table types for the data source. (All columns except
the TABLE_TYPE column contain NULLs.)

SQLTables Returns the list of table, catalog, or schema names,
and table types, stored in a specific data source.

SQLColumns Returns a list of columns in one or more tables.

Example: Using Catalog Functions with the QuickStartconnector

1. In the ODBC Test application, connect to the QuickStart connector.
2. To send the SQLTables (CATALOG_ONLY) catalog function, select Catalog >

SQLTables.
3. Enter SQL_ALL_CATALOGS for the CatalogName, then select the correct

value for NameLength1. For example:

4. Click OK.

5. Select to retrieve the results.

The following list of valid catalogs for the QuickStart data source are returned:
"TABLE_QUALIFIER", "TABLE_OWNER", "TABLE_NAME", "TABLE_TYPE",
"REMARKS"

For more information on SQL catalog functions, see https://msdn.microsoft.com/en-
us/library/ms713520(v=vs.85).aspx.

www.magnitude.com 33

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

https://msdn.microsoft.com/en-us/library/ms713520(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms713520(v=vs.85).aspx

Implementing Metadata Sources to Handle Catalog Functions

SQL catalog functions are represented in the DSI by metadata sources: there is one
metadata source for each of the catalog functions.

QSDataEngine::MakeNewMetadataTable() is responsible for creating the
metadata sources. Metadata sources are used return the catalog metadata about your
data store to the ODBC application for the ODBC catalog functions.

Open the file QSDataEngine.cpp and navigate to the line TODO #7 Create and
return your Metadata Sources.

There is one metadata source for each of the catalog functions. For example, when
the application calls SQLColumns(), a DSI_COLUMNS_METADATA source is created
to return the list of columns in one or more tables in the data store.

Each ODBC catalog function is mapped to a unique DSIMetadataTableId, which is
then mapped to an underlying MetadataSource that the connector implements and
returns. Each MetadataSource instance is responsible for the following:

1. Creating a data structure that holds the data relevant for the custom data store:
Constructor

2. Navigating the structure on a row-by-row basis: Move()
3. Retrieving data: GetData() (See Data Retrieval for a brief overview of data

retrieval).

Required Metadata Sources

All custom ODBC connectors must implement the following metadata sources, as they
are required by ODBC applications:

Metadata Source Description

DSI_TABLES_METADATA
List of all tables defined in the data source. This
source is constructed via the QSMetadataHelper
and SQL Engine.

DSI_CATALOGONLY_
METADATA

List of all catalogs defined in the data source, if
catalogs are supported. This source is
constructed via the QSMetadataHelper and SQL
Engine.

www.magnitude.com 34

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

Metadata Source Description

DSI_SCHEMA_METADATA

List of all schemas defined in the data source.
This source is constructed via the
QSMetadataHelper and SQL Engine.
QuickStartDSII does not support schemas.

DSI_TABLETYPEONLY_
METADATA

List of all table types (TABLE,VIEW,SYSTEM)
defined within the data source. This source is
constructed via the QSMetadataHelper and SQL
Engine.

DSI_COLUMNS_METADATA
List of all columns defined across all tables in
the data source. This source is constructed via
the QSMetadataHelper and SQL Engine.

DSI_TYPE_INFO_METADATA

List of the supported types by the data source.
This means the actual types that can be stored
in the data source, not necessarily the types that
can be returned by the connector. For instance,
a conversion may result in a type being returned
that is not stored in the data source.

Most catalog types are created using the metadata helper in conjunction with the SQL
Engine.

Handling DSI_TYPE_INFO_METADATA

The underlying ODBC catalog function SQLGetTypeInfo is handled as follows:

1. When called with DSI_TYPE_INFO_METADATA,
QSDataEngine::MakeNewMetadataTable() will return an instance of
QSTypeInfoMetadataSource().

2. The QuickStart sample connector exposes support for all data types, but due to
its underlying file format, it is constrained to support only the following types:

l SQL_BIGINT
l SQL_DECIMAL
l SQL_
LONGVARCHAR

l SQL_REAL

l SQL_SMALLINT
l SQL_TYPE_TIME
l SQL_WCHAR
l SQL_CHAR
l SQL_INTEGER

www.magnitude.com 35

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

l SQL_TYPE_DATE
l SQL_VARCHAR
l SQL_BIT
l SQL_DOUBLE
l SQL_
LONGWVARCHAR

l SQL_NUMERIC
l SQL_TINYINT
l SQL_TYPE_
TIMESTAMP

l SQL_WVARCHAR

3. For your connector, you may need to change the types returned and the
parameters for the types in QSTypeInfoMetadataSource::PrepareType
(). Change the passed in SqlTypeInfo object to modify the parameters of the
types that are supported.

Handling the Other MetadataSources

The other ODBC catalog functions, including SQLTables (CATALOG_ONLY),
SQLTables (TABLE_TYPE_ONLY), SQLTables (SCHEMA_ONLY), SQLTables and
SQLColumns, are handled automatically by the metadata helper class.

When these functions are called with any other DSIMetadataTableId,
QSDataEngine::MakeNewMetadataTable() should return null. Returning null
tells the Simba SDK to use the metadata helper class returned via
QSDataEngine::CreateMetadataHelper() along with some default
MetadataSources to create the data source metadata. You can also choose to
return a DSIMetadataSource if you don’t want to use the metadata helper.

Change the following methods:

l QSMetadataHelper::QSMetadataHelper()
The example constructor retrieves a list of the tables in the data source. Modify
this method to load the tables defined in your data store.

l QSMetadataHelper::GetNextTable()
In the QuickStart connector, this method returns the next table in the data
source. Modify this method to retrieve the next table from your data store.

The DSIExtMetadataHelper class works by retrieving the identifying information
for each table and then opening the table via QSDataEngine::OpenTable(). After
QSTable is implemented, the correct metadata will be returned for all of the tables and
columns in your data source.

You can now retrieve type metadata from your data store.

www.magnitude.com 36

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

Tip:

On Linux, Unix, and macOS platforms, this metadata is available using the
datatypes command in the iodbctest utility. As well, the SQLTables
catalog function is available using the tables command.

You can use these commands to test your implementation of Day Three.

Fetching Metadata for Catalog Functions in Developing Connectors for Data Stores
Without SQL

Summary of Day Three

Your custom ODBC connector can now return type metadata. You can use a ODBC-
enabled application to connect to your connector and retrieve type metadata from
within your data store

www.magnitude.com 37

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Three

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

Day Four

Day Four instructions explain how to enable data retrieval from within the connector.

Enable Data Retrieval

QSDataEngine::OpenTable() is the entry point where the Simba SQL Engine
requests that tables involved in the query be opened. It is called during the preparation
of a SQL statement.

Note:

The SQL Engine component of the Simba SDK allows applications to execute
SQL commands on data stores that are not SQL-capable.

Open the file QSDataEngine.cpp and navigate to the line TODO #8: Open A Table
to go to the relevant section of code.

QSTable is an implementation of DSIExtSimpleResultSet, an abstract class that
provides basic forward-only result set traversal. The main role of QSTable is to
translate the stored data from your native data format into SQL Data types.

The QuickStart sample connector is implemented for Tabbed Unicode Files. The
sample connector translates the text from UTF16-LE strings into the SQL Data types
defined for each column within the configuration dialog.

In the QuickStart connector, QSTable uses a TabbedUnicodeFileReader, which
provides an interface to navigate between lines within a Unicode text file. This class
preprocesses each row in the file to determine the starting file offset of each column in
the row. Its GetDatamethod takes a columnIndex and uses it to calculate the
exact position in the file where the column’s data resides. The method repositions the
file and retrieves the data as if from a byte-buffer. See Data Retrieval for a brief
overview of data retrieval.

The following sections explain how to implement data retrieval in your custom ODBC
connector.

Modify the OpenTable Method

The QSDataEngine::OpenTable()method is called during the preparation of a
SQL statement. Modify this method to check that the supplied catalog, schema and
table names are valid and correspond to a table defined in your data store. If the inputs
are not valid, return null to indicate that the table does not exist. If the inputs are
valid, return a new instance of QSTable.

www.magnitude.com 38

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Four

Modify QSTable

This section tells you how to modify QSTable so that it can work with your data store.

Return the catalog, schema and table names for your table

Make the following changes to your custom ODBC connector so that it can work with
your data store:

l QSTable::QSTable(): Modify the constructor to take in the catalog, schema
and table names and save them in member variables.

l QSTable::GetCatalogName(): Returns QS_CATALOG
l QSTable::GetSchemaName(): Returns simba_wstring() (because it does
not support schemas)

l QSTable::GetTableName(): Returns m_tableName

Return the columns defined for your table

Modify QSTable::InitializeColumns() so that, for each column defined in the
table, you define a DSIResultSetColumn in terms of SQL types.
Example: pseudo code for a custom QSTable::InitializeColumns()
For Each Defined Column
{

AutoPtr<DSIColumnMetadata> columnMetadata(
new DSIColumnMetadata());
columnMetadata->m_catalogName = m_catalogName;
columnMetadata->m_schemaName = m_schemaName;
columnMetadata->m_tableName = m_tableName;
columnMetadata->m_name = //column name
columnMetadata->m_label = //localized column name
columnMetadata->m_unnamed = false;
columnMetadata->m_charOrBinarySize = //the length in
bytes
columnMetadata->m_nullable = DSI_NULLABLE;
// Change the first parameter of this method to the
SQL
// type that maps to your data store type.
SqlTypeMetadata* sqlTypeMetadata =
SqlTypeMetadataFactory::MakeNewSqlTypeMetadata(
SQL_WVARCHAR, TDW_BUFFER_OWNED);
columns->AddColumn(
new DSIResultSetColumn(
sqlTypeMetadata,

www.magnitude.com 39

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Four

columnMetadata.Detach()));

}
m_columns.Attach(columns.Detach());

Implement Navigation

The methods listed below are responsible for navigating a data structure containing
information about one table in the data store, and retrieving data from the table. Modify
these methods for your data store:

l QSTable::MoveToBeforeFirstRow()

l QSTable::MoveToNextRow()

l TabbedUnicodeFileReader::GetData()

In your custom implementation:

l It is best to implement a streaming interface for the data in the table within your
data store.

l Provide the ability to navigate forward from one table row to the next.
l Provide the ability to navigate across columns within the row.
l Provide the ability to read the data associated with the current row and column
combination.

Modify the DoCloseCursor Method

QSTable::DoCloseCursor() is a callback method called from Simba SQL Engine
to indicate that data retrieval has completed, and that you may now do any tasks
related to closing the connection to your data store.

On Linux and UNIX platforms, lists of catalogs, schemas, tables and types are
available using the qualifiers, owners, tables and types commands in the iodbctest
utility.

Summary of Day Four

You can now execute queries and retrieve data from your data store. You can use any
ODBC-enabled application to execute queries and see the results returned from your
data store.

You can also run SQLTables() and SQLColumns() from within ODBCTest32.exe
(Unicode) and see the correct metadata returned.

www.magnitude.com 40

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Four

Day Five

Day Five instructions explain how to rebrand your custom ODBC connector.

Rebrand Error Messages

Error messages sent by the connector are visible to applications and customers. In the
QuickStart sample connector, error messages are branded with QuickStart, QS,
and Simba. This section explains how to rebrand the error messages to reflect the
custom connector name and the company name.

All the error messages used within the DSI implementation are stored in a file called
QSMessages.xml.

To configure error messages:

1. Rename the QSMessages.xml file to reflect the name of your company or your
custom ODBC connector.

2. Open the file QSDriver.cpp and navigate to the TODO #9 Register the
QSMessages.xml file for handling by DSIMessageSource message to go to
the relevant section of code.

3. Update the line associated with the TODO to match the new name of the
QSMessages.xml file.

4. Open the QSMessages.xml file and change all instances of the following items:
l Change the letters QS to an appropriate two-letter abbreviation.
l Change the word QuickStart to an appropriate name for your custom
connector.

5. For each exception thrown within the custom DSI implementation, change the
parameters to match your custom connector name. This rebrands the error
messages to reflect the name of your connector.

6. Open the file QSDriver.cpp and navigate to the TODO #10 Set the vendor
name, which will be prepended to error messages message to jump to the
relevant section of code.

7. The vendor name is prepended to all error messages that are visible to
applications. As explained in the code comments, change the vendor name from
Simba to an appropriate name for your company.

How can I update the vendor name in the Tableau Datasource Connection (TDC)
file?

A TDC file contains configuration information that will be applied to any Tableau
connection that matches the database vendor name and connector name described in

www.magnitude.com 41

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Five

the TDC file.

To set the vendor name for your custom ODBC connector:

1. Ensure you have set your vendor name as described in TODO #10.
2. In the class that extends DSIConnection (QSConnection in our sample

QuickStart Connector), set the property DSI_CONN_DBMS_NAME to your
vendor name.

Example:
SetProperty(DSI_CONN_DBMS_NAME,
AttributeData::MakeNewWStringAttributeData
("YourVendorName"));

By default, the value of the DSI_CONN_DBMS_NAME property is TEXT.
3. Set the vendor name in the TDC file by following the instructions on Tableau's

website.

These steps allow Tableau to match the vendor name in the TDC file with the
associated SQLGetInfo() property it queries the connector for.

Rebrand the Custom ODBC Connector

All the TODOs in the QuickStart sample connector project are finished, and the
custom connector is rebranded and retrieving data from your data store. To complete
the custom connector, add the following functionality:

1. Rename all files and classes in the project to have the two-letter abbreviation
chosen as part of TODO #9.

2. Create a connector configuration dialog. This dialog is presented to the user
when they create a new ODBC DSN or configure an existing one. Note that the
QuickStart connector project for Linux and UNIX platforms does not contain an
example ODBC configuration dialog.

Conclusion

You have written a custom ODBC connector that can be used by ODBC-enabled
applications to query and retrieve data from a custom data store. The custom ODBC
connector is renamed and rebranded for your company and product.

www.magnitude.com 42

Build a C++ ODBC Driver in 5 Days (MAC OS X) Day Five

Reference

This section contains more information that you may find useful when developing your
sample ODBC driver.

Driver Managers

Unlike Windows machines, most Linux, Unix, and macOS installations do not come
with a driver manager as part of the operating system. You must install your own driver
manager before you can compile and test your connector under Linux, Unix, or
macOS. The following driver managers are supported by the Simba SDK:

Driver Manager Download Location Simba SDK Support

iODBC www.iodbc.org
l Linux and Unix SDK
l MacOS SDK

UnixODBC www.unixodbc.org l Linux and Unix SDK

Note:

This document uses the iODBC driver manager as an example, because it is
supported by the Simba SDK on all Linux, Unix, and macOS platforms. It also
contains an ODBC test utility.

How do I know where my driver manager is installed?

If you did not install the driver manager yourself, you can look for it in typical
installation directories. The driver manager must be installed to a directory that is on
the library path:

l LD_LIBRARY_PATH on most Linux platforms
l SHLIB_PATH on HP/UX
l LIBPATH on AIX
l DYLD_LIBRARY_PATH on macOS

The iODBC driver manager is often installed to /usr/lib or /usr/local/lib. If
you do not know where your driver manager is installed, try searching those directories
for libraries containing the name libiodb.

www.magnitude.com 43

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

http://www.iodbc.org/
http://www.unixodbc.org/

Locating the Configuration Files

The driver manager loads configuration information from the first odbc.ini and
odbcinst.ini files that it finds. The Simba SDK loads connector-specific
configuration information from the first .simba.QuickStart.ini file that it files.
Having multiple copies of these configuration files is not uncommon on development
or customer machines, but can lead to confusion when a connector is not loaded as
expected.

The Simba SDK installer configures the odbc.ini and odbcinst.ini files with
information for the sample connectors, making it easy for you to get started with your
custom connector. However, there are many different locations where the
configuration files can be stored, and it is possible for multiple versions of these files to
exist on a customer's machine.

Locating the odbc.ini File

The driver manager looks for this file in the following locations, in the order specified:

1. If the ODBCINI environment variable is set, the driver manager looks in the
directory specified by this variable.

2. If there is no variable set, or if no file is found in that location, the driver manager
looks in the user's home directory, ~/.

Note:

In this directory the file must have a preceding dot, for example:
~/.odbc.ini

3. The driver manager looks in the user-specific Library directory,
~/Library/ODBC.

4. The driver manager looks in the /etc directory, for example /etc/odbc.ini.

Note:

There is no dot in front of the odbc.ini file in the /etc directory.

5. The driver manager looks in the system-wide Library directory,
/Library/ODBC.

Locating the odbcinst.ini File

The driver manager looks for this file in the following locations, in the order specified:

www.magnitude.com 44

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

1. If the corresponding environment variable is set, the driver manager looks in the
directory specified by this variable.

2. If there is no variable set, or if no file is found in that location, the driver manager
looks in the user's home directory.

Note:

In this directory the file must have a preceding dot, for example:
~/.odbcinst.ini

3. The driver manager looks in the user-specific Library directory,
~/Library/ODBC.

4. The driver manager looks in the /etc directory, for example
/etc/odbcinst.ini

Note:

There is no dot in front of the odbcinst.ini file in the /etc directory.

5. The driver manager looks in the system-wide Library directory,
/Library/ODBC.

Locating the .simba.QuickStart.ini configuration file

The Simba SDK searches for the .simba.QuickStart.ini file in the following
locations, in the specified order:

1. The path, including the file name, specified using the SIMBAINI environment
variable.

Note:

The name of this environment variable can be rebranded.

2. The connector directory, as a non-hidden .ini file.
3. The directory that the client application is launched from.
4. In $HOME, as a hidden .ini file
5. In /etc/ as a non-hidden .ini file

Using Environment Variables to Specify the Location of the Configuration Files

The location of configuration files is determined by environment variables, as shown
below:

www.magnitude.com 45

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

Environment Vari-
able File

ODBCINI
Specifies the full path (including the file name) of the
odbc.ini file for the iODBC and unixODBC driver
managers.

ODBCINSTINI Specifies the full path (including the file name) of the
odbcinst.ini file for the iODBC driver manager.

For example, these environment variables could be set as shown below:
Example:
export ODBCINI=/usr/local/odbc/myodbc.ini
export ODBCINSTINI=/usr/local/odbc/myodbcinst.ini

If the environment variables are not set, the driver manager assumes that the
configuration files exist in the user’s home directory using the default file names
.odbc.ini and .odbcinst.ini.

Configure the Connector and Data Source

Data Retrieval

In the Data Store Interface (DSI), the following methods perform the actual task of
retrieving data from your data store:

l Each MetadataSource implementation of GetMetadata()
l TabbedUnicodeFileReader::GetData()

Both methods provide a way to uniquely identify a column within the current row. For
MetadataSource, the Simba SQL Engine passes in a unique column tag (see
DSIOutputMetadataColumnTag). For QSTable, the Simba SQL Engine will pass
in the column index .

In addition, both methods accept the following three parameters:

l in_data

The SQLData into which you must copy the value of your cell. This class is a
wrapper around a buffer managed by the Simba SQL Engine. To access the
buffer, you call its GetBuffer()method. The data you copy into the buffer must
be formatted as a SQL Type (see https://msdn.microsoft.com/en-
us/library/ms710150%28VS.85%29.aspx for a list of data types and definitions).

www.magnitude.com 46

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

https://msdn.microsoft.com/en-us/library/ms710150%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms710150%28VS.85%29.aspx

Therefore, if your data is not stored as SQL Types, you will need to write code to
convert from your native format.

The type of this parameter is governed by the metadata for the column that is
returned by the class. Thus, if you set the SQL Type of column 1 in QSTable::
InitializeColumns() to SQL_INTEGER, then when
TabbedUnicodeFileReader::GetData() is called for column 1, you will be
passed a SQLData that wraps an int data type. For MetadataSource, the type is
associated with the column tag (see DSIOutputMetadataColumnTag.h).

Example:

If SqlData was of type SQL_INTEGER:
simba_int32 value = 5;
//This is one way
memcpy(in_data->GetBuffer(), &value, sizeof(simba_int32));
// This is another way; both work equally well
reinterpret_cast<simba_int32>(in_data->GetBuffer()) = 5;

When working with variable length data, for example character or binary data,
you must call SetLength() before calling GetBuffer(). Not doing so may
result in a heap violation. See QSTypeUtilities.h for an example on how to
handle character or binary data.

l in_offset

Character, wide character and binary data types can be retrieved in parts. This
value specifies where, in the current column, the value should be copied from.
The value is usually 0.

l in_maxSize

The maximum size (in bytes) that can be copied into the in_data parameter.
For character or binary data, copying data that is greater than this size can result
in a data truncation warning or a heap violation.

SqlData Types

SqlData objects represent the SQL types and encapsulate the data in a buffer. To get
the underlying SQL type that a SqlData object represents, use GetMetadata()-
>GetSqlType(). This retrieves the associated SQL_* type.

For information on how SQL types map to C++ types, see SQL Data Types in
Developing Connectors for Data Stores Without SQL

www.magnitude.com 47

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

http://cdn.simba.com/products/SEN/doc/development_guides/nosql

Data Conversion in Practice

In the QuickStart example, when GetData() is called the values are read from the
tabbed Unicode file (in TabbedUnicodeFileReader::GetData), converted to simba_
wstrings (in QSTable::ReadWholeColumnAsString) and then converted to the
requested SQL data type (in QSTable::ConvertData). This works well because the
data source is a text file and a good cross-platform example.

For your data source, if you’re already getting data of the correct type—integers, for
example—then ideally you should skip the conversion to strings so you can achieve
better performance. Be aware of which data types map to which SQL Types, as well as
how to represent them in the expected format. Then you can set the buffer in an
appropriate manner.

NULL Values

To represent a null value, directly set the SqlData object as null:

in_data->SetNull(true);

Server Configuration

Your custom ODBC connector can be recompiled as a server and deployed in a client-
server configuration. The connection settings for the connector are normally retrieved
directly from the ODBC DSN. However, when the connector is a server, the settings
cannot be retrieved directly because the DSN refers to the client instead of a specific
connector. Also, to enforce security, clients do not have control over server-specific
settings.

For information about making a connection to a connector that is compiled and built as
a server, see the SimbaClient/Server Developer Guide.

How to Add Schema Support

Some applications require support for schemas (note that Microsoft Excel does not
require schema support). If the data store supports schemas, the connector can
provide access to them. To support schemas, a connector must handle DSI_
SCHEMAONLY_METADATA.

To add schema support to a connector:

1. By default, QSConnnection::SetConnectionPropertyValues() disables
schema support via DSIPropertyUtilities::SetSchemaSupport().
Change this value to true to enable schema support.

www.magnitude.com 48

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

http://www.simba.com/products/SEN/doc/Client-Server_user_guide

2. Make the following additional changes:

a. QSMetadataHelper::GetNextTable()
In the QuickStart sample connector, a blank schema is returned because
schema support is not enabled by default. To enable schema support,
return the schema in the Identifier to allow Simba SDK to open the
correct table.

b. QSDataEngine::OpenTable()
Modify this method to verify the given schema and return the correct table
for the given catalog, schema and table name.

c. QSTable::GetSchemaName()
Modify this method to return the schema to which the table belongs

Install the Evaluation License

You can use Simba SDK for 30 days after installing the evaluation license. The
evaluation license is emailed to the person who registered the product.

Typically, you use Simba SDK to create your custom ODBC connector, then use a test
ODBC-enabled application to retrieve data using the connector. you are running.

Install the Evaluation License on Unix, Linux, and macOS

To license the Simba SDK:

Save the license file under the $HOME directory, either as a hidden or a non-
hidden file. For example:

/home/<user_id>/SimbaEngineSDK.lic for a non-hidden file

/home/<user_id>/.SimbaEngineSDK.lic for a hidden file

Troubleshooting

This section contains solutions to common problems.

Specified Driver Could Not Be Loaded

On Linux, Unix, and macOS platforms, the error Specified Driver Could Not
Be Loadedmay be returned when you try to connect to a data source. Here are some
of the reasons the driver manager cannot load the specified connector:

l You are using a 64-bit driver manager, but have 32-bit paths defined in the
odbc.ini or odbsinst.ini files

l You define the path to the debug version of the connector, but you built the non-
debug version

www.magnitude.com 49

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

Unable to Connect to the Connector

In the odbc.ini and odbcinst.ini files, be sure there are no characters such as
spaces or tabs at the end of a value. This can cause failure to connect.

Is My Driver Manager 32-or-64 bit?

You can use the file command.
Example:

This version of iodbctest (and therefore the iODBC driver manager) is 64-bit:
/usr/local/bin> file iodbctest
iodbctest: ELF 64-bit LSB executable, x86-64, version

Testing and Troubleshooting in the guide Developing Connectors for Data Stores
Without SQL

www.magnitude.com 50

Build a C++ ODBC Driver in 5 Days (MAC OS X) Reference

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql

Contact Us

For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Note:

To help us assist you, prior to contacting Technical Support please prepare a
detailed summary of the Simba SDK version and development platform that
you are using.

You can contact Technical Support via the Magnitude Support Community at
www.magnitude.com.

You can also follow us on Twitter @SimbaTech and@Mag_SW.

www.magnitude.com 51

Build a C++ ODBC Driver in 5 Days (MAC OS X) Contact Us

http://www.magnitude.com/

Third-Party Trademarks

Simba, the Simba logo, Simba SDK, and Simba Technologies are registered
trademarks of Simba Technologies Inc. in Canada, United States and/or other
countries. All other trademarks and/or servicemarks are the property of their
respective owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or
other countries.

Mac and macOS are trademarks or registered trademarks of Apple, Inc. or its
subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure,
Windows Server, Windows Vista, and the Windows start button are trademarks or
registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United
States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other
countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in
Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in
Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.

www.magnitude.com 52

Build a C++ ODBC Driver in 5 Days (MAC OS X) Third-Party Trademarks

	Table of Contents
	About this Guide
	Simba SDK Overview
	ODBC Standards
	The Simba SDK Solution
	About the QuickStart Sample Connector

	Day One
	Install the Simba SDK
	Build the Sample ODBC Connector
	Configure the Connector and Data Source
	Connect to the Data Source
	Set up a Custom ODBC Connector Project
	Configure Your Custom Connector and Data Source
	Debug Your Custom Connector
	Enable Logging

	Day Two
	Set the Configuration Branding
	Set Connector Properties
	Set Logging Details
	Check Connection Settings
	Establish a Connection

	Day Three
	Create and Return Metadata Sources

	Day Four
	Enable Data Retrieval

	Day Five
	Rebrand Error Messages
	Rebrand the Custom ODBC Connector

	Reference
	Driver Managers
	Locating the Configuration Files
	Data Retrieval
	Server Configuration
	How to Add Schema Support
	Install the Evaluation License
	Troubleshooting

	Contact Us
	Third-Party Trademarks

